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 You have some bags of coins. 
 Each bag contains exactly 𝑘 coins. 

 Exactly one bag contains only counterfeit coins 
▪ Call this the fake bag

 All other bags contain only real coins

 You have a scale
 You can use the scale at most 𝑚 times

 Right side and left side

 Place an equal number of coins on each side

 Scale reads a real number
▪ Difference in weight between the two sides in grams

 Given 𝑘 and 𝑚, what’s the largest number of bags for which you can determine the fake 
bag?
 You must specify beforehand all weighings you want to perform 

▪ you cannot adjust what gets weighed in future trials based on the results of previous trials



 Let real coins weigh 𝑔, and fake coins weigh 𝑔 + 𝑥.

 Since we put an equal number of coins on each side at each weighing, the results 
of the 𝑚 weighings will be 𝑎1𝑥, 𝑎2𝑥,… , 𝑎𝑚𝑥 for some integers 𝑎𝑖.
 We don't know 𝑥 in this case, but we can scale all the results so that they are relatively 

prime integers.

 Each unique result then can be mapped to an original bag, thus the problem reduces to 
counting the number of valid relatively prime tuples.

 We can map a tuple (𝑎1, 𝑎2, … , 𝑎𝑚), with gcd(𝑎1, 𝑎2, … , 𝑎𝑚) = 1 onto each bag. 
 In the 𝑖𝑡ℎweighing, we will put |𝑎𝑖| coins on the left side if 𝑎𝑖 < 0, otherwise, we will put 𝑎𝑖

coins on the right side. 

 Note we need to handle cases where some 𝑎𝑖 can be zero, but this can be done by fixing 
the number of zeros and doing some binomial coefficients.

 To count this, we can use the mobius inversion formula to do inclusion/exclusion.

 Time complexity is 𝑂(𝑚𝑘).



 Given a small game of battleship (at most 5 × 5) and the 

hits and misses on one player’s board, determine the 

number of possible opponent’s ship placements.

 Ships are placed horizontally or vertically

 Ships are distinct, even if they have the same size

 Orientation isn’t important, only squares covered O X

O X
O = Hit!

X = Miss



 It’s a simple recursive backtracking problem, recursing on placing the ships

 At each level, place one ship:

▪ For each way to place the ship in the remaining grid:

▪ Place the ship

▪ Recurse to the next ship

▪ Unplace the ship

 If you can recurse down to where all ships are placed, that’s one placement to count.

 The most placements is for an empty 5×5 grid with five size-two ships

▪ That totals 18,840,000 placements, which is doable one by one. 

▪ No need for fancy combining algorithms

 But, there are two traps:

 First, you must place each ship horizontally, and then vertically, UNLESS it’s a ship of size 

one. Then, Vertical and Horizontal placements are the same

 Next, once you’ve placed all the ships, you must check that there are no leftover hits (‘O’)



 A zoo has enclosed area formed by circular fences (Bomas)

 The Bomas do not intersect or touch but they may nest

 Animal types must be separated by an empty area

 For any two area that share a border fence, at most one may house 

animals

 The zoo wants to add a new Boma.

 There will be multiple queries

 For each, what’s the most areas where animals can be placed?

 The area outside all bomas can house animals



 Computing the inclusion hierarchy

 Vertical sweep line, process events from left to right

 Each circle has two events: open (on its far left) and close (on its far right)

 An open event inserts two objects to track: the upper and the lower 
semicircles

 A close event removes those semicircles

 It’s guaranteed that no circles intersect, so the ordering of these 
semicircles is stable for all positions of the sweep line
▪ Caveat: enforce that the upper semicircle of circle 𝐶 is always above the lower 

semicircle of circle 𝐶, since they intersect each other at the moment of insertion

 𝑂(𝑛) events, 𝑂(𝑛) objects, 𝑂(𝑛 log 𝑛) total processing time using balanced 
BST for sweep line



 Single query, inclusion hierarchy known

 Tree DP
 Max number of chosen circles inside circle 𝐶 given that circle 𝐶 itself 

{𝑖𝑠, 𝑖𝑠 𝑛𝑜𝑡} chosen

 Computable based on that of 𝐶’s immediate children

 Except this is actually greedy
 Always choose the innermost/leaf circles

 If the max number for a child of 𝐶 is achieved by choosing that child, the 

max number for 𝐶 when choosing 𝐶 cannot be higher than the max 

number for 𝐶 when not choosing 𝐶, so not choosing 𝐶 is strictly better 

because it grants the possibility of choosing 𝐶’s parent



 Multiple queries, inclusion hierarchy known

 Include the query circles in the tree of circles

 Propagate the information up through query circles 

appropriately, so that the real circles have their values and 

selection set as though the query circles didn’t exist
▪ “Choose” a query circle if any of its immediate children are chosen

▪ “Value” a query circle as the sum of its children, NEVER adding 1 for the 

query circle itself

 When reporting back the value of each query after computing 

the values for the entire tree, add 1 as needed to account for 

the query circle itself (i.e., if it is not “chosen”)



 You and a friend want to All Kill a programming contest
 That means to solve all of the problems

 Solving a problem has two phases
 A thinking phase and a coding phase. 

 Your friend is responsible for all the thinking while you are responsible for all the coding.
 You use this strategy:

 For each problem that doesn't yet have an idea, your friend will get the idea to solve it with 
probability 1/(number of minutes remaining). 
▪ Your friend can get the idea to solve multiple problems in the same minute.

 Among the problems that still need code time and your friend has gotten the solution idea, you will 
take the lowest numbered one and spend the next minute coding it 

 If no problem satisfies the condition, you do nothing at this step.
 What is the probability that:

 Your team finishes coding all the problems by the end of the contest

 For each problem, the time spent coding that problem is a contiguous interval
 Let 𝑝 be this probability, 𝑛 be the number of problems in the contest and 𝑡 be the number of 

minutes in the contest. 
 It can be shown that 𝑝 ∙ 𝑡𝑛is an integer. Output 𝑝 ∙ 𝑡𝑛 𝑚𝑜𝑑(998,244,353)



 Instead of problems and time, it may be easier to think about this as placing some blocks on 
a physical location in a line. 
 We go through the blocks from 1 to 𝑛, and choose a number randomly, and try to place the block 

starting at the first empty position after the randomly chosen number. 

 If this process succeeds for all blocks, then this corresponds to a valid scenario from the original 
problem. 

 This process can fail if there isn't enough space for the block at the first empty position, or if there 
are no empty positions.

 To solve this problem, there are a few observations. 
 First, instead of placing blocks in a line with n empty spaces, let's place blocks in a circle with 𝑛 + 1

empty spaces. 

 Blocks will scan from a position clockwise around the circle until they find an empty space to try to 
go in. 

 This time, we are guaranteed every block will eventually find an empty space, but this process can 
still fail if there isn't enough space. 

 In the end, we can multiply the answer by (# 𝑒𝑚𝑝𝑡𝑦 𝑠𝑙𝑜𝑡𝑠) / (𝑛 + 1), since everything in on a circle, 
everything is symmetric, so the count of configurations where a particular space is empty we added 
is the same for all spaces.



 So now, the main issue is counting the number of valid ways to place the blocks in a circle. 

 As a first step, it doesn't matter where we put our first block since it's on a circle. As another simplifying 
assumption, let's assume there will only be one empty space at the end (we will talk about how to 
adjust the logic later to account for multiple empty spaces).

 After we place this first block, we get a line, and let's partition this line into n sections (we don't fix the 
sizes of each sections yet, this will be determined by the order of the blocks after we're done). We will 
imagine these sections to exactly hold one block, and one section will be left empty.

 For the second block, we choose a spot where it starts searching. There are two cases, this spot is 
occupied or empty. If the spot is empty, this means it must be the beginning of some section, so there 
are n ways to choose this. If the spot is occupied, then this second block will end up in a section that 
immediately follows an already occupied section. There are 𝑥1ways to choose this spot.

 For the third block, we choose a spot where it starts searching. Again, there are two cases, this spot is 
occupied or empty. If this spot is empty, this is the beginning of some section, of which there are n-1 
ways to choose this. If the spot is occupied, then the third block will end up in a section that 
immediately follows an already occupied section. There are 𝑥1 + 𝑥2ways to choose this spot (and 
notice, this is always the same regardless of where the first and second blocks are adjacent or not).



 Generalizing, we can see the 𝑖𝑡ℎblock has 
(𝑛 − 𝑖 + 2 + 𝑥1 + 𝑥2 + … + 𝑥𝑖)
choices of a spot. Thus, the answer is just the product of all these choices.

 To deal with empty spaces, instead of starting with 𝑛 sections, we 
start with (𝑛 − 1 + #𝑒𝑚𝑝𝑡𝑦 𝑠𝑙𝑜𝑡𝑠) sections, and the resulting logic is 
similar.

 To summarize, the main observations are:
 Do this on a circle instead of a line

 Split the circle into sections, but don't fix the sizes of the sections while the 
process is going. The section sizes will be determined after the order of 
the blocks is determined



 Alice has an 𝑛 ×𝑚 grid and a 2 × 2 block. 
 She would like to place her block in the grid so that the block is axis-

aligned and covers exactly 4 grid cells.

 Bob wants to prevent Alice from doing that, so he places 
obstacles in some of the grid cells.

 How many ways can Bob place the minimum number of 
obstacles to prevent Alice from placing her 2 × 2 block?
 Note: The answer is not the minimum number of obstacles, it’s the 

number of ways of placing the minimum number of obstacles



 if 𝑛 and 𝑚 are odd, the answer is 1.

 if 𝑛 is odd and 𝑚 is even, then answer is (
𝑚

2
+ 1)

𝑛

2

 (and the case for if 𝑛 is even and 𝑚 is odd is similar)

 if 𝑛 and 𝑚 are even, we can do a bit mask dynamic programming solution.

 For every 0 ≤ 𝑖 <
𝑛

2
and 0 ≤ 𝑗 <

𝑚

2
, there exists exactly obstacle in one of the 

squares:
𝑥[2𝑖,2𝑗] 𝑥[2𝑖+1,2𝑗] 𝑥[2𝑖,2𝑗+1] 𝑥[2𝑖+1,2𝑗+1]

 Call these the "aligned" 2 × 2 subgrids. 

 We can't do any less, since otherwise, Alice would be able to place her 2 × 2 block in this 
space, so this minimizes the number of blocks needed. We can use this fact to do a 
bitmask dp.



 Imagine we place a block in the upper left corner of each aligned subgrid. 
 We can optionally push the blocks in some prefix of each row right. 

 Similarly, we can optionally push the blocks in some prefix of each column down. 

 This will ensure that it's impossible for Alice to place her 2 × 2 block when one of the coordinates of the top left square 
is even. 

 The only tricky case is to make sure we also exclude cases where both coordinates of the top left square are odd.

 We can see in this example we can run into a bad case (here, the first row has been pushed right, and 
the second column has been pushed down).

.X|..

..|.X
-----
X.|..
..|X.

 Fortunately, this is a local condition that we can make sure to exclude, so we can do a bitmask dp to 
solve this. (here, the state is length of prefix of row that's pushed right, and set of columns which we 
can still push down). This is still slightly too slow, so to speed it up, we can use fast Walsh Hadamard 

transform. The overall runtime is 𝑂(2
𝑛

2 ∙ 𝑛2 ∙ 𝑚).



 There's a new art installation in town
 An 𝑛 × 𝑛 grid of tiles

 Each tile has a number from 1 to 𝑘

 You want to play Hopscotch on it
 Start at any tile numbered 1, hop to a tile numbered 2, then 3, and so 

on, to 𝑘.

 What’s the shortest possible distance?
 Use Manhattan Distance between tiles: |𝑥2 − 𝑥1| + |𝑦2 − 𝑦1|



 It’s just a shortest path problem, so we’ll use Dijkstra’s algorithm

 First, a simplification:
 Create an 𝑎𝑟𝑟𝑎𝑦[1. . 𝑘] of lists of points, where 𝑎𝑟𝑟𝑎𝑦[𝑖] is a list of coordinates of tiles with 

the value 𝑖.
 That’s just a single pass through the matrix. You can even do this while reading in the 

matrix

 This will keep us from having to search the whole matrix at every step of Dijkstra’s 
algorithm

 Then, it’s just Dijkstra’s
 Start by populating the priority queue with the coordinates of all 1 tiles, with  𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = 0
 Then, when taking a tile with value 𝑖 off of the priority queue, just use 𝑎𝑟𝑟𝑎𝑦[𝑖 + 1] to find 

the next tiles

 Of course, stop when you first reach a tile with value 𝑘



 Scheduling problems to solve on each of 𝑛 days of 
Programming Contest camp

 There are 𝑝 traditional problems and 𝑞 creative problems
▪ Schedule one of each on each day

▪ Cannot use any problem more than once

▪ Each problem (both kinds) has a difficulty expressed as an integer 𝑑.

▪ The sum of the difficulties of the two problems on any given day cannot 
exceed some constant 𝑠

▪ Define a value 𝐷 such that the difference in difficulties on every day is 
less than or equal to 𝐷

▪ Find the smallest possible value 𝐷



 A Matching Subproblem
 If we are given 𝐷 and 𝑠, can we determine the maximum cardinality of the 

matching?

 Yes. We can use a greedy algorithm: 
▪ For every max element remaining in 𝑃, we try to find the max element in 𝑄 that can be 

paired with it. 

▪ We may prove the correctness of the algorithm by showing that the greedily chosen pair 
always lead to an optimal answer, otherwise we can make swaps.

 We can use some binary-searchable data structure to efficiently find the max 
element in 𝑄. Thus the greedy algorithm takes 𝑂(𝑛log𝑛) time.

 Finding the Minimum 𝐷
 With the greedy algorithm we can binary search the minimum 𝐷 that gives us a

matching with a cardinality of at least n.

 Then entire algorithm runs in 𝑂(𝑛log𝑛 ∙ log𝐷) time, where 𝐷 ≤ 109.



 There are three horizontal wheels of letters stacked one on 
top of the other, all with the same number of columns.
 All wheels have one letter, either A, B, or C, in each of its columns on 

the edge of the wheel.

 You may rotate the wheels to adjust the positions of the letters.
▪ In a single rotation,you can rotate any single wheel to the right or to the left by 

one column.

 The wheels are round, of course, so the first column and last column 
are adjacent.

 What’s the fewest possible rotations
 so that every column has three distinct letters?



 Call the three wheels 𝒂, 𝒃 and 𝒄
 The Simple Solution:

For (delta_ab in 0..n-1)

If (good(a, b, delta_ab))

For (delta_bc in 0..n-1)

If (good(b, c, delta_bc) && good(a, c, delta_ab + delta_bc)

Result min= bestcost(delta_ab, delta_bc)

 In other words, Try all deltas between 𝒂 and 𝒃, and all 
deltas between 𝒃 and 𝒄, find the smallest combo that 
works.



 Best cost given a pair of deltas
 Given 𝑑𝑎𝑏 rotation and 𝑑𝑏𝑐 rotation, the 𝑑𝑎𝑐rotation is just their sum 

(modulo n).  
▪ Define 𝑛𝑜𝑟𝑚(𝑑) as min(𝑑 mod 𝑛, 𝑛 − 𝑑 mod 𝑛)

 If we find a solution where the ab rotation is 𝑑𝑎𝑏, and the bc
rotation is 𝑑𝑏𝑐, what are the best three values 𝑑𝑎, 𝑑𝑏, and 𝑑𝑐 such 
that

𝑑𝑎𝑏 = 𝑑𝑏 − 𝑑𝑎, 𝑑𝑏𝑐 = 𝑑𝑐 - 𝑑𝑏, and 𝑑𝑎𝑐 = 𝑑𝑐 − 𝑑𝑎(all mod n)

that minimizes abs(𝑑𝑎) + abs(𝑑𝑏) + abs(𝑑𝑐)? 



 This will always reach a minimum with one of the 𝑑𝑎 ,𝑑𝑏 ,𝑑𝑐 values equal to zero.

 Why?  Consider the directions you turn the wheels.  

 If you turn all three one direction, you can improve it by turning all three one fewer twist in 
that direction.  

 If you turn two in one direction, you can improve it by turning those two one fewer twist in 
that direction and turning the third one more twist in the other.  

 Thus, the optimal value will always occur with one wheel unturned and the other two turning 
in opposite directions.

 This is min(norm(𝑑𝑎𝑏) + norm(𝑑𝑏𝑐), norm(𝑑𝑎𝑏) + norm(𝑑𝑎𝑐), norm(𝑑𝑏𝑐) + norm(𝑑𝑎𝑐)).



 For the simple algorithm, our runtime is O(n^3)
 The a and b wheels can be consistent O(n) times.  

 We need to try O(n) offsets for d_bc

 Checking the c wheel against a and b takes another factor of O(n).

 At n=5000 this is too slow; we need to trim a factor of O(n).

 Given a d_ab, we can calculate what c needs to look like ignoring 
rotation (call it c') in O(n) 

 We can do this as we check a against b for consistency.  

 So we want to ask the question:  what rotations of c (if any) are consistent 
with this?



 A simple solution is to just build a hash table that maps all rotations of c 
to a vector of rotation values.

 Another solution is to use a cyclic hash and check for a matching hash 
value.

 Either one of these tricks reduces the runtime to O(n^2) and passes 
easily.

 An even faster solution is to an Fast Fourier Transform or Number 
Theoretic Transform to construct a solution with convolutions.  One of 
the judge solutions exhibits this technique, but it was not necessary to 
get a solution that runs in time.



 Given a string 𝑠 and an integer 𝑑, how many distinct 
strings are a Levenshtein Distance of exactly 𝑑 from 𝑠?

 The Levenshtein Distance between two strings is the 
smallest number of simple one-letter operations needed 
to change one string to the other.

 Adding a letter anywhere in the string

 Removing a letter from anywhere in the string

 Changing any letter in the string to any other letter in the 
alphabet



 Standard Edit Distance with Dynamic Programming
 Given string a with length |𝑎| and 𝑏 with length |𝑏|

 Build a two-dimensional array dp of size (|𝑏| + 1) × (|𝑎| + 1), with 
the rows associated with the cursor positions in string 𝑏 and the 
columns with the cursor positions in string 𝑎.  The entry dp[i][j] 
gives the edit distance between the i character prefix of b and the j 
character prefix of a.

 Edge conditions:  dp[0][j] = j; dp[i][0] = i

 Otherwise, dp[i][j] = min(dp[i-1][j]+1,       
dp[j][i-1]+1, d[i-1][j-1]+(b[i-1]==a[j-1] ? 0 : 1)



 Deconstructing the Algorithm
 Row i depends only on row i-1, the string a, and (for i>0) the 

character b[i-1].

 Adjacent elements in a row differ by a maximum value of 1.

 The length a is short; less than or equal to 10.

 The maximum allowed distance is at most 10.  (We can treat any 
values more than 10 as 11).

 Thus, the number of distinct possible rows in the dp matrix, across 
all strings, is small.



 Generalizing from one string to all strings

 Instead of considering a single string 𝑏 and building each row 

one by one, we consider all strings of a given length, and build 

a hashmap mapping the row value to the count of strings that 

end up generating that row.

 The initial hashmap is just {(0,1,… , |𝑎|) 1} representing the 

empty string.

 We know the length of a matching string cannot be more than 

|𝑎| + 𝑑, so this sets a bound on how far to iterate.



 Iterate from 0 to d.

 Given such a hashmap, we can iterate over it, consider all 

possible 26 characters to extend 𝑏, and generate the new 

hashmap for the next length.

 At each iteration we add the number of strings 𝑏 at this length 

that have the required edit distance value in their row at 

element |𝑎|.



 Mia needs help remembering her 𝑛 colleagues’ names

 She buys lunch for all of them over the course of 𝑚 days

 She buys 𝑏 burgers and 𝑛 − 𝑏 salads

▪ 𝑏 varies per day

 She watches her colleagues eat lunch, and notes whether 

they’re eating a burger or a salad

 In this way, she starts to identify her colleagues

 Given 𝑛, 𝑚 and 𝑚 values of 𝑏 (one for each day), what’s the 

maximum number of colleagues that she can uniquely identify?



 Think of a matrix of n columns and m rows with binary values 

(1/0). 

 Each column represents one colleague. 

 Each day represents a row. 

 Cell (𝑖, 𝑗) is 1 or 0 if we give colleague 𝑗 a burger or a salad on 

day 𝑖. 

 We can reorder the values in each row.

 Consider the values in each column as a sequence of values. 

 If the sequence is unique, it means what the colleague eats over 

the 𝑚 days is distinguishable from what the other colleagues eat. 

 So we want to maximize the number of sequences that are 

unique, by reordering the values in every row.

A B C

Day 1 🍔 🥗 🥗

Day 2 🍔 🍔 🥗

A B C

Day 1 1 0 0

Day 2 1 1 0



 We are essentially creating partitions by distributing each day’s burgers into different

columns, starting with an initial partition of { 𝑛 }.

 For each group of size 𝑔, we can assign 𝑘 burgers to it, and split it into two smaller groups of

sizes 𝑘 and 𝑔 − 𝑘

Here is how we achieve answer 5 in sample 2:

{16}

{6, 10} 1111110000000000 𝑎1 = 6
{2, 4, 6, 4} 1100001111110000 𝑎2 = 8
{1, 1, 1, 3, 1, 5, 1, 3} 1001111000000111 𝑎3 = 8



The groups we have are only distinguishable by their sizes. In how many ways can we split 𝑛
= 30 elements into 1. . 30 groups? There are only 5604 ways, which is 𝒂(30) listed at 

https://oeis.org/A000041. This value is also computable by simple DP.

 𝒂(30) is not a big number.

 We can probably track all the ways to create the partitions. 

 Each partition 𝑃 can be viewed as a sorted list of its group sizes.

 On each day, we pick some existing partition 𝑃 and decide how to distribute the burgers

into the groups of 𝑃.

 For each group in 𝑃 we decide how many burgers to place in this group to split it.

https://oeis.org/A000041


 Let our state be (𝑃𝑡𝑜𝑆𝑝𝑙𝑖𝑡 , 𝑃𝑠𝑝𝑙𝑖𝑡 , 𝑏) on each day. 𝑏 is the number of burgers left. For the first

group of size 𝑔 in 𝑃𝑡𝑜𝑆𝑝𝑙𝑖𝑡, we enumerate 𝑘, the number of burgers to put into the first group,

and move on to a new state (𝑃𝑡𝑜𝑆𝑝𝑙𝑖𝑡 \ {𝑔}, 𝑃𝑠𝑝𝑙𝑖𝑡 ∪ {𝑔 − 𝑘, 𝑘}, 𝑏 − k).

 Let the space of 𝑃𝑡𝑜𝑆𝑝𝑙𝑖𝑡 × 𝑃𝑠𝑝𝑙𝑖𝑡 be 𝑆. Multiplied by 𝑏, the total number of states in each day 

is 𝑂 𝑛𝑆 . For each state, we enumerate 𝑂(𝑛) choices of 𝑘. Additionally to maintain 𝑃𝑡𝑜𝑆𝑝𝑙𝑖𝑡
and 𝑃𝑠𝑝𝑙𝑖𝑡 we need to modify elements in the sorted group lists after enumerating 𝑘, which 

takes 𝑂(𝑛). Our cost is 𝑂(𝑛3𝑆) for each day, and 𝑂(𝑛3𝑚𝑆) in total. 

 To roughly estimate 𝑆, we have 𝑆 = σ𝑖 𝒂(𝑖)𝒂(𝑛 − 𝑖) where 𝑖 is even, because the number of 

groups in 𝑃𝑠𝑝𝑙𝑖𝑡 is always even. This is about 𝑆 ≈ 3 ∙ 105. 𝑂(𝑛3𝑚𝑆) ≈ 8 ∙ 1010 , which seems 

slow. As it is a loose bound, it gives us the intuition that the actual algorithm may run faster.



There are a few places where we can get a more precise estimate:

 The enumeration of 𝑘 depends on the size of the first group, and also 𝑏.

 𝑏 cannot exceed the sum of all group sizes in 𝑃𝑡𝑜𝑆𝑝𝑙𝑖𝑡.

 The cost to maintain the sorted group lists depend on how many groups we currently have.

If we run a program to take those into account precisely, we shall see that the total cost on 

each day is about 5.6 ∗ 107 . This provides a much better estimate on 𝑂(𝑛3𝑆) . Multiplied by 𝑚
= 10, our total cost is 5.6 ∗ 108 and is feasible.



There are at least two ways to reduce the constant factor in the algorithm:

1) The number of burgers 𝑎𝑖 is equivalent to 𝑛 − 𝑎𝑖 , we can take the min of the them, and 

reduce the constant by a factor of 2.

2) When we find a way to obtain the max possible answer n, we terminate immediately.

These will speed up the solution, but neither is required to solve the problem.



 A Tree is is a connected, acyclic, undirected graph 
 With 𝑛 nodes and 𝑛 − 1 edges

 There is exactly one path between any pair of nodes

 A Rooted Tree is a tree with one particular node identified as the root

 A set of nodes for roots 𝑟 and 𝑝 is obtainable if and only if it can be 
expressed as the intersection of a subtree in the tree rooted at 𝑟 and a 
subtree in the tree rooted at 𝑝.

 For a given pair of roots 𝑟 and 𝑝, count the number of different non-empty 
obtainable sets.

 There can be multiple queries in the input file



 In the unrooted tree, consider the path between 𝑟 and 𝑝.

 For any node not on that path, any intersection either has the whole subtree 

there or you don’t.

 The only “interesting” nodes are the ones between 𝑟 and 𝑝.

 You can take any contiguous sub-segment of the path between 𝑟 and 𝑝.

 If there are 𝑘 nodes between 𝑟 and 𝑝 (inclusive)

 then there are 
𝑘
2

+ 𝑛 options

 To count the number of nodes between two nodes:

 use a BIT or Segment tree to find the LCA in 𝑂(log𝑁) time, or

 use a sparse table to find the depth of the LCA in 𝑂(1) time

 Overall runtime: 𝑂(𝑁 + 𝑄 log𝑁) or 𝑂(𝑁 log𝑁 + 𝑄) depending on 

implementation.



 There is a tomb (represented as an 𝑛 × 𝑛 grid) with gargoyles, obstacles and 

mirrors

 The walls are mirrors

 The internal mirrors are angled at 45°

 The gargoyles each have 2 faces: Either top & bottom, or left & right

 You can rotate any gargoyle by 90 degrees

 What’s the fewest number of gargoyles you must rotate so that every gargoyle face can 

see another gargoyle face (possibly its own)?

The first diagram shows a tomb. 

The second shows a solution for this tomb, rotating 3 gargoyles



If there is a light path directly connecting 

two gargoyles, they must be in a same 

direction.

If there is a light path connecting two gargoyles 

via 𝑘 mirrors, then if 𝑘 is odd, the two gargoyles 

must be in different directions. Otherwise, they 

are in a same direction.

If there is a light path connecting one side of a 

gargoyle to an obstacle, then one direction of 

the gargoyle is prohibited.



 Consider V and H as black and white. 

 Then each gargoyle has a binary color and we can change its 

color. 

 Based on the floorplan, we want some pairs of gargoyles have 

the same color, some pairs have different colors. 

 How to make the smallest number of color changes so that the 

same/different color requirement is satisfied?

 This is a bi-coloring problem. 



 Let each gargoyle be a node, and each same/different color 
requirement be an edge. 
 We can build the graph to bicolor.

 We may group those nodes that must have a same color together, and 
treat them as one super-node. 

 After this, the remaining edges are all requirements of different colors.

 If there is an odd-length cycle in this graph, then there is a conflict, 
and the answer is -1. 

 Otherwise, we have two choices of coloring for each connected 
component. 
 We can compute how many gargoyles need to be rotated for each choice, 

and use the one that needs fewer rotations.



 The bi-coloring graph has 𝑂(𝑛𝑚) nodes and 

𝑂(𝑛𝑚) edges. It takes 𝑂(𝑛𝑚) time to build it, as we only 

need to traverse each cell in the grid four times (from/to 

its four neighbors).

 Solving the bi-coloring takes 𝑂(𝑛𝑚) time.

 Total time: 𝑂(𝑛𝑚)


